Optimal Size of Linear Matrix Inequalities in Semidefinite Approaches to Polynomial Optimization

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Optimization on linear matrix inequalities for polynomial systems control

Many problems of systems control theory boil down to solving polynomial equations, polynomial inequalities or polyomial differential equations. Recent advances in convex optimization and real algebraic geometry can be combined to generate approximate solutions in floating point arithmetic. In the first part of the course we describe semidefinite programming (SDP) as an extension of linear progr...

متن کامل

Linear Matrix Inequalities with Stochastically Dependent Perturbations and Applications to Chance-Constrained Semidefinite Optimization

The wide applicability of chance–constrained programming, together with advances in convex optimization and probability theory, has created a surge of interest in finding efficient methods for processing chance constraints in recent years. One of the successes is the development of so–called safe tractable approximations of chance–constrained programs, where a chance constraint is replaced by a...

متن کامل

Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion

Abstract A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Algebra and Geometry

سال: 2019

ISSN: 2470-6566

DOI: 10.1137/18m1201342